\qquad

C.U.SHAH UNIVERSITY

Winter Examination-2022

Subject Name: Group Theory

Subject Code: 4SC05GRT1
Semester: 5

Date: 23/11/2022

Branch: B.Sc. (Mathematics)
Time: 02:30 To 05:30
Marks: 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:
a) In group G the order of the identity element is \qquad _.
b) True or false: $(N,+)$ is group.
c) Define: Order of an element of group.
d) The order of 2 in $\left(Z_{3}+{ }_{3}\right)$ is \qquad .
e) True or false: $\sigma=(12345) \in S_{5}$ is an odd permutation.
f) Define:Subgroup of group of G
g) State necessary and sufficient condition for non-empty subset H of group G to be subgroup.
h) True or false:Every cyclic groupisan abelian.
i) Define: Kernel ofgroup of homomorphism.
j) Find $O(G)$ where $G=S_{4}$.
k) Find $<2>$ and $<3>$ in group $\left(Z_{8},+_{8}\right)$.
l) Find $\sigma \mu$ and σ^{2} where $\sigma=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$ and $\mu=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$.

Attempt any four questions from Q-2 to Q-8
Q-2 Attempt all questions
a) Show that $\left(Z_{6},+_{6}\right)$ is commutative group group.
b) Prove that for any group $(G, *)$ (i) the Identity element in $(G, *)$ is unique
(ii) The inverse element in $(G, *)$ is unique.
c) If $(G, *)$ be group then prove that $(a * b * c)^{-1}=c^{-1} * b^{-1} * a^{-1} \forall a, b, c \in G$.

Q-3 Attempt all questions
a) If H_{1} and H_{2} are two subgroups of group G then prove that $H_{1} \cap H_{2}$ also subgroup of G.
b) Show that G is commutative group if $(a b)^{n}=a^{n} b^{n} n ; \forall a, b \in G$ for any three
consecutive integer n.
c) Show that the every element of finite group is of finite order.

Q-6 Attempt all questions

a) Show that the set $\{1,-1, i,-i\}$ is cyclic group with respect to multiplication with the identity 1.
b) Prove that every cyclic group is an abelian but converse is not true.
c) Find the order of each element in cyclic group $\left(Z_{6},+_{6}\right)$ and also find all generators of z_{6}.

Q-7 Attempt all questions
a) A subgroup H of G is normal subgroup of G if and only if $a \mathrm{Ha}^{-1} \subset H: \forall a \in G$
b) Suppose $\left(G,^{\circ}\right) \cong\left(G^{\prime}, *\right)$. Then prove that if G is commutative then G^{\prime} is commutative
c) Let $G=\{1,-1, i,-i\}$ and $H=\{1,-1\}$ then show that H is normal subgroup of G

Q-8 Attempt all questions
a) State and prove Lagrange's theorem.
b) State and prove Caley's theorem identity element of G and G^{\prime} respectively.

Attempt all questions
a) Let G be a group and let $a \in G$ is such that $O(a)=n$ then $a^{m}=e$ some $m \in Z$ if and only if n / m.
b) Show that every group of prime order is cyclic.
c) Let G be grou:p and for $a \neq e$ in G the set $H=\left\{a^{n} \mid n \in Z\right\}$ is subgroup of G.

