Enrollment No: ____

Exam Seat No:_____ C.U.SHAH UNIVERSITY Winter Examination-2022

Subject Name: Group Theory

	Subject	Code: 4SC05GR	Т1	Branch: B.Sc. (Mat	hematics)	
	Semeste	er: 5 Dat	e: 23/11/2022	Time: 02:30 To 05:3	30 Marks: 70	
	Instructi (1) (2) (3) (4)	ons: Use of Programma Instructions writte Draw neat diagram Assume suitable d	able calculator & any n on main answer bo ns and figures (if nec ata if needed.	other electronic instrume ook are strictly to be obeye ressary) at right places.	nt is prohibited. d.	
Q-1	a) b)	Attempt the fol In group <i>G</i> the c True or false:(<i>N</i>	lowing questions: order of the identity e (, +) is group.	lement is		(14) (01) (01)
	c) d) e) f)	Define: Order of The order of 2 in True or false: σ	f an element of group n $(Z_3 +_3)$ is = $(1 \ 2 \ 3 \ 4 \ 5) \in S_5$ i n of group of C	o. s an odd permutation.		(01) (01) (01) (01)
	r) g)	State necessary subgroup.	and sufficient condit	ion for non-empty subset <i>H</i>	f of group <i>G</i> to be	(01)
	h) i) j)	True or false: Ev Define: Kernel of Find $O(G)$ when	ery cyclic groupisan ofgroup of homomor e $G = S_4$.	abelian. phism.		(01) (01) (01)
	k) l)	Find $< 2 >$ and Find $\sigma\mu$ and σ^2	< 3 > in group (Z_8) where $\sigma = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$	$(+_8).$ $(3)_1 and \mu = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$		(02) (02)
Atte	empt any	four questions from	om Q-2 to Q-8			
Q-2	a) b) c)	Attempt all que Show that $(Z_6, Prove that for an(ii) The inverseIf (G,*) be group$	estions + ₆) is commutative $(G,*)$ (i) the element in (G,*) is up then prove that (a *	group group. The Identity element in (<i>G</i> ,* nique. $(b * c)^{-1} = c^{-1} * b^{-1} * a^{-1}$) is unique ^{−1} $\forall a, b, c \in G$.	(14) (05) (05) (04)
Q-3	a)	Attempt all que If H_1 and H_2 are subgroup of G.	e stions e two subgroups of g	roup G then prove that H_1	\cap <i>H</i> ₂ also	(14) (05)
	b)	Show that <i>G</i> is c	commutative group if Pag	$f(ab)^n = a^n b^n n$; $\forall a, b \in \mathbb{R}$	$\exists G \text{ for any three}$	(05)

itivo inte

		consecutive integer <i>n</i> .	
	c)	Show that the every element of finite group is of finite order.	(04)
Q-4		Attempt all questions	(14)
	a)	For $\sigma, \mu \in S_3$ where $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $\mu = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ then show that $\sigma \mu = \mu \sigma$.	(05)
	b)	$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4 \end{pmatrix}$ then find σ^{-1} and $O(\sigma)$.	(05)
	c)	If $\emptyset: G \to G'$ be an isomorphism, then prove that $\emptyset(e) = e'$ Where <i>e</i> and <i>e'</i> are identity element of <i>G</i> and <i>G'</i> respectively.	(04)
Q-5		Attempt all questions	(14)
	a)	Let G be a group and let $a \in G$ is such that $O(a) = n$ then $a^m = e$ some $m \in Z$ if and only if n/m .	(05)
	b)	Show that every group of prime order is cyclic.	(05)
	c)	Let <i>G</i> be grou:p and for $a \neq e$ in <i>G</i> the set $H = \{a^n n \in Z\}$ is subgroup of <i>G</i> .	(04)
Q-6		Attempt all questions	(14)
-	a)	Show that the set $\{1, -1, i, -i\}$ is cyclic group with respect to multiplication with the identity 1	(05)
	b)	Prove that every cyclic group is an abelian but converse is not true.	(05)
	b) c)	Prove that every cyclic group is an abelian but converse is not true. Find the order of each element in cyclic group $(Z_6, +_6)$ and also find all generators of z_6 .	(05) (04)
Q-7	b) c)	Prove that every cyclic group is an abelian but converse is not true. Find the order of each element in cyclic group $(Z_6, +_6)$ and also find all generators of z_6 . Attempt all questions	(05) (04) (14)
Q-7	b) c) a)	Prove that every cyclic group is an abelian but converse is not true. Find the order of each element in cyclic group $(Z_6, +_6)$ and also find all generators of z_6 . Attempt all questions A subgroup <i>H</i> of <i>G</i> is normal subgroup of <i>G</i> if and only if $aHa^{-1} \subset H : \forall a \in G$	(05) (04) (14) (05)
Q-7	 b) c) a) b) 	Prove that every cyclic group is an abelian but converse is not true. Find the order of each element in cyclic group $(Z_6, +_6)$ and also find all generators of z_6 . Attempt all questions A subgroup <i>H</i> of <i>G</i> is normal subgroup of <i>G</i> if and only if $aHa^{-1} \subset H : \forall a \in G$ Suppose $(G, ^\circ) \cong (G', *)$. Then prove that if <i>G</i> is commutative then G' is commutative	(05) (04) (14) (05) (05)
Q-7	 b) c) a) b) c) 	Prove that every cyclic group is an abelian but converse is not true. Find the order of each element in cyclic group $(Z_6, +_6)$ and also find all generators of z_6 . Attempt all questions A subgroup <i>H</i> of <i>G</i> is normal subgroup of <i>G</i> if and only if $aHa^{-1} \subset H : \forall a \in G$ Suppose $(G, ^\circ) \cong (G', *)$. Then prove that if <i>G</i> is commutative then <i>G'</i> is commutative Let $G = \{1, -1, i, -i\}$ and $H = \{1, -1\}$ then show that <i>H</i> is normal subgroup of <i>G</i>	(05) (04) (14) (05) (05) (04)
Q-7 Q-8	 b) c) a) b) c) 	Prove that every cyclic group is an abelian but converse is not true. Find the order of each element in cyclic group $(Z_6, +_6)$ and also find all generators of z_6 . Attempt all questions A subgroup <i>H</i> of <i>G</i> is normal subgroup of <i>G</i> if and only if $aHa^{-1} \subset H : \forall a \in G$ Suppose $(G, ^\circ) \cong (G', *)$. Then prove that if <i>G</i> is commutative then <i>G'</i> is commutative Let $G = \{1, -1, i, -i\}$ and $H = \{1, -1\}$ then show that <i>H</i> is normal subgroup of <i>G</i> Attempt all questions	(05) (04) (14) (05) (05) (04) (14)
Q-7 Q-8	 b) c) a) b) c) 	Prove that every cyclic group is an abelian but converse is not true. Find the order of each element in cyclic group $(Z_6, +_6)$ and also find all generators of z_6 . Attempt all questions A subgroup <i>H</i> of <i>G</i> is normal subgroup of <i>G</i> if and only if $aHa^{-1} \subset H : \forall a \in G$ Suppose $(G, \circ) \cong (G', \ast)$. Then prove that if <i>G</i> is commutative then G' is commutative Let $G = \{1, -1, i, -i\}$ and $H = \{1, -1\}$ then show that <i>H</i> is normal subgroup of <i>G</i> Attempt all questions State and prove Lagrange's theorem.	(05) (04) (14) (05) (05) (04) (14) (07)

b) State and prove Caley's theorem

